High Temperature Accuracy
Integrated Silicon Pressure Sensor
for Measuring Absolute Pressure,
On-Chip Signal Conditioned,
Temperature Compensated and
Calibrated

The MPXA6115A/MPXH6115A series sensor integrates on-chip, bipolar op
amp circuitry and thin film resistor networks to provide a high output signal and
temperature compensation. The small form factor and high reliability of on-chip
integration make the pressure sensor a logical and economical choice for the
system designer.

The MPXA6115A/MPXH6115A series piezoresistive transducer is a state-of-
the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor
combines advanced micromachining techniques, thin film metallization, and
bipolar semiconductor processing to provide an accurate, high level analog
output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a
pressure sensor chip.

Features
• Improved Accuracy at High Temperature
• Available in Small and Super Small Outline Packages
• 1.5% Maximum Error over 0° to 85°C
• Ideally suited for Microprocessor or Microcontroller-Based Systems
• Temperature Compensated from -40° to +125°C
• Durable Thermoplastic (PPS) Surface Mount Package

Typical Applications
• Aviation Altimeters
• Industrial Controls
• Engine Control/Manifold Absolute Pressure (MAP)
• Weather Station and Weather Reporting Device Barometers

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Options</th>
<th>Case No.</th>
<th>MPX Series Order No.</th>
<th>Packing Options</th>
<th>Device Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMALL OUTLINE PACKAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Element</td>
<td>Absolute, Element Only</td>
<td>482</td>
<td>MPXA6115A6U</td>
<td>Rails</td>
<td>MPXA6115A</td>
</tr>
<tr>
<td></td>
<td>Absolute, Element Only</td>
<td>482</td>
<td>MPXA6115A6T1</td>
<td>Tape & Reel</td>
<td>MPXA6115A</td>
</tr>
<tr>
<td>Ported Element</td>
<td>Absolute, Axial Port</td>
<td>482A</td>
<td>MPXA6115AC6U</td>
<td>Rails</td>
<td>MPXA6115A</td>
</tr>
<tr>
<td></td>
<td>Absolute, Axial Port</td>
<td>482A</td>
<td>MPXA6115AC6T1</td>
<td>Tape & Reel</td>
<td>MPXA6115A</td>
</tr>
<tr>
<td>SUPER SMALL OUTLINE PACKAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Element</td>
<td>Absolute, Element Only</td>
<td>1317</td>
<td>MPXH6115A6U</td>
<td>Rails</td>
<td>MPXH6115A</td>
</tr>
<tr>
<td></td>
<td>Absolute, Element Only</td>
<td>1317</td>
<td>MPXH6115A6T1</td>
<td>Tape & Reel</td>
<td>MPXH6115A</td>
</tr>
<tr>
<td>Ported Element</td>
<td>Absolute, Axial Port</td>
<td>1317A</td>
<td>MPXH6115AC6U</td>
<td>Rails</td>
<td>MPXH6115A</td>
</tr>
<tr>
<td></td>
<td>Absolute, Axial Port</td>
<td>1317A</td>
<td>MPXH6115AC6T1</td>
<td>Tape & Reel</td>
<td>MPXH6115A</td>
</tr>
</tbody>
</table>

1. Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external
circuitry or ground. Pin 1 is denoted by the notch in the lead.

© Freescale Semiconductor, Inc., 2007. All rights reserved.
Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings\(^{(1)}\)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Pressure (P(_1 > P(_2))</td>
<td>P(_{\text{max}})</td>
<td>400</td>
<td>kPa</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T(_{\text{stg}})</td>
<td>-40° to +125°</td>
<td>°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T(_{\text{A}})</td>
<td>-40° to +125°</td>
<td>°C</td>
</tr>
<tr>
<td>Output Source Current @ Full Scale Output(^{(2)})</td>
<td>I(_{\text{o}^+})</td>
<td>0.5</td>
<td>mAdc</td>
</tr>
<tr>
<td>Output Sink Current @ Minimum Pressure Offset(^{(2)})</td>
<td>I(_{\text{o}^-})</td>
<td>-0.5</td>
<td>mAdc</td>
</tr>
</tbody>
</table>

1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
2. Maximum Output Current is controlled by effective impedance from V\(_{\text{out}}\) to Gnd or V\(_{\text{out}}\) to V\(_{\text{S}}\) in the application circuit.
Table 2. Operating Characteristics (V_S = 5.0 Vdc, T_A = 25°C unless otherwise noted, P1 > P2)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Range</td>
<td>P_{OP}</td>
<td>15</td>
<td>—</td>
<td>115</td>
<td>kPa</td>
</tr>
<tr>
<td>Supply Voltage(1)</td>
<td>V_S</td>
<td>4.75</td>
<td>5.0</td>
<td>5.25</td>
<td>Vdc</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_o</td>
<td>-</td>
<td>6.0</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>Minimum Pressure Offset(2) (0 to 85°C)</td>
<td>V_{off}</td>
<td>0.133</td>
<td>0.200</td>
<td>0.268</td>
<td>Vdc</td>
</tr>
<tr>
<td>Full Scale Output(3) (0 to 85°C)</td>
<td>V_{FSO}</td>
<td>4.633</td>
<td>4.700</td>
<td>4.768</td>
<td>Vdc</td>
</tr>
<tr>
<td>Full Scale Span(4) (0 to 85°C)</td>
<td>V_{FSS}</td>
<td>4.433</td>
<td>4.500</td>
<td>4.568</td>
<td>Vdc</td>
</tr>
<tr>
<td>Accuracy(5) (0 to 85°C)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±1.5</td>
<td>%V_{FSS}</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>V/P</td>
<td>—</td>
<td>45.9</td>
<td>—</td>
<td>mV/kPa</td>
</tr>
<tr>
<td>Response Time(6)</td>
<td>t_R</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>ms</td>
</tr>
<tr>
<td>Warm-Up Time(7)</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>ms</td>
</tr>
<tr>
<td>Offset Stability(8)</td>
<td>—</td>
<td>—</td>
<td>±0.25</td>
<td>—</td>
<td>%V_{FSS}</td>
</tr>
</tbody>
</table>

1. Device is ratiometric within this specified excitation range.
2. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
3. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
4. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
5. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of error including the following:
 • Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 • Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 • Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25°C.
 • TcSpan: Output deviation over the temperature range of 0°C to 85°C, relative to 25°C.
 • TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0°C to 85°C, relative to 25°C.
6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.
8. Offset Stability is the product's output deviation when subjected to 1000 cycles of Pulsed Pressure, Temperature Cycling with Bias Test.
Figure 2 illustrates the absolute sensing chip in the basic Super Small Outline chip carrier (Case 1317).

Figure 3 shows a typical application circuit (output source current operation).

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85°C temperature range. The output will saturate outside of the rated pressure range.

Figure 3. Typical Application Circuit (Output Source Current Operation)

A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MPXA6115A/MPXH6115A series pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.
Transfer Function (MPXA6115A/MPXH6115A)

Nominal Transfer Value: \[V_{out} = V_S \times (0.009 \times P - 0.095) \pm (\text{Pressure Error} \times \text{Temp. Factor} \times 0.009 \times V_S) \]

\[V_S = 5.0 \pm 0.25 \text{ Vdc} \]

Temperature Error Band

Temperature Error Factor

NOTE: The Temperature Multiplier is a linear response from 0ºC to -40ºC and from 85ºC to 125ºC

Pressure Error Band

Pressure Error (Max) ±1.5 (kPa)
MINIMUM RECOMMENDED FOOTPRINT FOR SMALL AND SUPER SMALL PACKAGES

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

Figure 5. SOP Footprint (Case 482)

Figure 6. SSOP Footprint (Case 1317 and 1317A)
PACKAGE DIMENSIONS

CASE 482-01
ISSUE O
SMALL OUTLINE PACKAGE

NOTES:
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT.

CASE 482A-01
ISSUE A
SMALL OUTLINE PACKAGE

NOTES:
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
5. ALL VERTICAL SURFACES 5˚ TYPICAL DRAFT.
NOTES:

1. ALL DIMENSIONS IN INCHES.

3. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSION SHALL NOT EXCEED .006 INCHES PER SIDE.

4. ALL VERTICAL SURFACES TO BE 5° MAXIMUM.

5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 INCHES MAXIMUM.
PACKAGE DIMENSIONS

MECHANICAL OUTLINE

<table>
<thead>
<tr>
<th>TITLE:</th>
<th>MECHANICAL OUTLINE</th>
<th>PRINT VERSION NOT TO SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 LD, PORTED SSOP</td>
<td>DOCUMENT NO: 98ARH9089A</td>
<td>REV: C</td>
</tr>
<tr>
<td>CASE NUMBER: 1317A-03</td>
<td>24 MAY 2005</td>
<td></td>
</tr>
<tr>
<td>STANDARD: NON-JEDEC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CASE 1317A-03
ISSUE C
SUPER SMALL OUTLINE PACKAGE
NOTES:

1. ALL DIMENSIONS IN INCHES.

3. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
 MOLD FLASH OR PROTRUSION SHALL NOT EXCEED .006 INCHES PER SIDE.

4. ALL VERTICAL SURFACES TO BE 5° MAXIMUM.

5. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 INCHES MAXIMUM.